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Abstract. This paper proposes a reformulation and extension of the concept of Extended Self-Similarity. In
support of this new hypothesis, we discuss an analysis of the probability density function (pdf) of turbulent
velocity increments based on the class of normal inverse Gaussian distributions. It allows for a parsimonious
description of velocity increments that covers the whole range of amplitudes and all accessible scales from
the finest resolution up to the integral scale. The analysis is performed for three different data sets obtained
from a wind tunnel experiment, a free-jet experiment and an atmospheric boundary layer experiment with
Taylor-Reynolds numbers Rλ = 80, 190, 17000, respectively. The application of a time change in terms of
the scale parameter δ of the normal inverse Gaussian distribution reveals some universal features that are
inherent to the pdf of all three data sets.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer

1 Introduction

Since the pioneering work of Kolmogorov [1–3] and
Obukhov [4–6], intermittency of the turbulent velocity
field plays a central role in turbulence research. Inter-
mittency refers to the fact that fluctuations around the
mean velocity occur in clusters and are more violent
than expected from Gaussian statistics. Furthermore, the
frequency of large fluctuations increases with increasing
resolution. In terms of moments of velocity increments
u(s) ≡ v(σ + s) − v(σ), intermittency in turbulence is
usually described by approximate multifractal scaling of
structure functions

Sn(s) = E{(v(σ + s) − v(σ))n} ∝ |s|τ(n). (1)

Here, v(σ) is one component of the velocity (usually along
the mean flow) at position σ and the lag s is within the
so-called inertial range. The inertial range is defined as
the range of scales where the spectrum E(k) (the Fourier
transform of the correlation function of the velocity field)
displays a power law E(k) ∝ k−5/3 [4,5,7]. The term mul-
tifractal scaling is due to the non-linear dependence of the
scaling exponents τ(n) > 0 on the order n.

Multifractal scaling of velocity increments is assumed
to hold in the limit of infinite Reynolds number. However,
experiments show that the scaling behaviour (1) might
be poor, even for large Reynolds numbers [8,9]. Further-
more, even if the scaling relation (1) holds, the inertial
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range still covers only part of the accessible scales where
intermittency is observed.

One way to improve the characterization of intermit-
tency by means of (1) consists of applying the concept
of Extended Self-Similarity (ESS) introduced by Benzi
et al. [10]. Plotting structure function of order n against
those of some order n′ < n improves the accuracy of (1) in
most cases and leads to an extension of the scaling range.
The theoretical foundation of this effect is not understood
in detail.

In Section 5 we propose a reformulation and extension
of ESS in the form of a stochastic equivalence relation.
In support of this hypothesized relation we provide, in
Sections 3 and 4, the results of a detailed analysis of three
main data sets.

From a probabilistic point of view, (1) expresses a scal-
ing relation for the moments of the probability density
function (pdf) of velocity increments. A proper estimation
of higher-order moments requires an accurate estimation
of the tails of the pdf. Thus it may be advantageous to
directly work with the pdf. In terms of the pdf, intermit-
tency refers to the increase of the non-Gaussian behaviour
of the pdf of velocity increments with decreasing lag.

A typical scenario is characterized by a Gaussian shape
for the large scales (larger than scales at the inertial
range), turning to exponential tails within the inertial
range and stretched exponential tails for dissipation scales
(below the inertial range). This change of shape across
all scales clearly reveals the inadequacy of a characteri-
zation of intermittency solely via multifractal scaling of
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structure functions (which is observed only within the in-
ertial range).

A detailed parsimonious description of the pdf of ve-
locity increments not only contributes to a basic under-
standing of intermittency in turbulence, but also has im-
portant applications in engineering problems. Its relevance
for the description of turbulent combustion and other
applications was discussed in detail by Kuznetsov and
Sabelnikov [11].

Existing work about the pdf of velocity increments
concentrates on a description of the tails of the pdf or
characterizes the pdf only within the inertial range.

Exponential tails ∝ exp(−b(s)u) for the pdf of veloc-
ity increments with lags s within the inertial range are re-
ported in [12–14]. A detailed investigation of the logarith-
mic decrement b(s) as a function of the lag s is performed
in [15]. They propose a power-law b(s) ∝ sβ with β ≈ 0.17
as a reasonable fit within the inertial range. [16–19] extend
the description of the tails from exponentials to stretched
exponentials ∝ exp(bum) to include dissipative scales be-
low the inertial range and integral scales above the in-
ertial range. The stretching exponent m appears to vary
continuously from 0.5 in the dissipation range up to 2
for integral scales [17]. [20] reports stretched exponential
tails with stretching exponents m restricted to m ≥ 1 for
a flow between concentric cylinders at Reynolds numbers
where there is no inertial range, i.e. no scaling of the spec-
trum. [21,22] compare the tails of the pdf of longitudinal
(where the lag s is along the direction of the mean flow)
and transversal velocity increments (where the lag s is
perpendicular to the direction of the mean flow) and find
stretched exponentials in both cases.

There are a number of theoretical models that incor-
porate the exponential behaviour of the tails of the pdf
of velocity increments and attempt to describe the iner-
tial range statistics for all amplitudes of the velocity field.
Most of these are based on the multifractal description
and thus restricted to the inertial range.

[23] connects the multifractal scaling of absolute ve-
locity increments |u(s)| with Gaussian large scale fluctu-
ations and derive a superposition of stretched exponen-
tials for the pdf of velocity increments with lags s within
the inertial range. In this and similar approaches, the ob-
served skewness of velocity increments (which is due to a
stretching of vortex lines and relates to the energy trans-
fer towards small scales) is neglected. A similar approach
with a discrete superposition of Gaussian distributions is
proposed in [17].

In [24], moments of absolute velocity increments are
linked to the pdf by a simple integral relation. Using an
asymptotic relation, the non-skewed, i.e. symmetrized, pdf
can be constructed from the multifractal scaling spec-
trum τ(n).

Castaing et al. [12] start from the log-normal model of
Kolmogorov [3] and Obukhov [6]. They fit the variance of
the scale-dependent energy dissipation rate ε by a power
law and assume all quantities conditioned on fixed ε as be-
ing Gaussian. In this framework they find a superposition

of Gaussian distributions with log-normal variances as an
empirical model for the non-skewed inertial-range pdf.

[25–30] combine the multifractality of velocity incre-
ments with statistics that are constructed from gener-
alized measures of entropy, i.e. extensive Rényi or non-
extensive Tsallis entropy. The multifractal aspect of their
analysis again restricts to inertial range statistics.

[31] use an approach that is not based on multifrac-
tality of velocity increments. They derive numerically the
pdf of velocity increments from a Fokker-Planck approach
that includes the observed skewness of the pdf. However,
the Markov-hypothesis of the velocity field breaks down
for scales below the Taylor scale which is within the iner-
tial range. Thus they are not able to include dissipation
scale statistics.

In summary, these references focus on the tails, on the
inertial range and/or on absolute velocity increments.

According to [7], it is an open question whether dif-
ferent ranges of scales (dissipative, inertial and integral
scales) require different functional forms of the pdf of ve-
locity increments or whether it is possible to find one func-
tional form for the pdf that is varying continuously with
the scale.

The present work answers this question in favour of a
unified description at all scales. We provide an empirical
description of the skewed pdf of velocity increments that
covers all accessible scales and provides a reasonable fit for
all amplitudes within one tractable class of distributions.
It turns out that normal-inverse Gaussian (NIG) distri-
butions are flexible enough to achieve this goal with high
accuracy.

Section 2.1 gives a summary of the mathematical prop-
erties of NIG distributions, and Section 2.2 provides a
summary of the type of data we analyse. Section 3 and
Section 4 contain the main results. The pdf of velocity
increments for all lags and all amplitudes can be fitted
within the four-parameter class of NIG distributions. The
quality of the fit is independent of the lag s and inde-
pendent of the kind of experiment. We also perform an
analysis of the tails of the pdf in terms of stretched ex-
ponentials; the estimates of the stretching exponents m
as a function of the lag s are in conformity with classical
findings. The variability features of the four parameters
are examined in more detail in Section 4. The use of the
scale parameter δ of the NIG distribution as a generic
time change reveals some universal features for the re-
maining parameters of the NIG distributions and for the
stretching exponents m that describe the tails. Section 5
discusses some implications of our empirical findings and
establishes the connection to ESS. In particular, we show
that ESS can be viewed as an immediate consequence of a
stochastic equivalence relation that connects the statistics
of velocity increments of different experiments and differ-
ent Reynolds numbers. Section 6 concludes.

2 Background

This section gives a brief overview of the mathematical
properties of the normal inverse Gaussian distribution,
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that are essential for the analysis performed in subsequent
sections. We also provide a brief description of the kind of
data we use for our analysis.

2.1 NIG distributions

The normal inverse Gaussian law, with parameters α, β, µ
and δ, is the distribution on the real axis R having prob-
ability density function

p(x; α, β, µ, δ) = a(α, β, µ, δ)q
(

x − µ

δ

)−1

× K1

{
δαq

(
x − µ

δ

)}
eβx (2)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(3)

and where K1 is the modified Bessel function of the third
kind and index 1. The domain of variation of the param-
eters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α. The
distribution is denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution
NIG(α, β, µ, δ) then the cumulant generating function
of X , i.e. K(θ; α, β, µ, δ) = log E{eθX}, has the form

K(θ; α, β, µ, δ)=δ
{√

α2 − β2−
√

α2−(β+θ)2
}
+µθ. (4)

It follows immediately from this that if x1, ..., xm are inde-
pendent normal inverse Gaussian random variables with
common parameters α and β but individual location-scale
parameters µi and δi (i = 1, ..., m) then x+ = x1 + ...+xm

is again distributed according to a normal inverse Gaus-
sian law, with parameters (α, β, µ+, δ+).

Furthermore, the first four cumulants of
NIG(α, β, µ, δ), obtained by differentiation of (4),
are found to be

κ1 = µ +
δρ√

1 − ρ2
, κ2 =

δ

α(1 − ρ2)3/2
(5)

and

κ3 =
3δρ

α2(1 − ρ2)5/2
, κ4 =

3δ(1 + 4ρ2)
α3(1 − ρ2)7/2

, (6)

where ρ = β/α. Hence, the standardised third and fourth
cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1 − ρ2)1/2}1/2

κ̄4 =
κ4

κ2
2

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
. (7)

We note that the NIG distribution (2) has semiheavy tails;
specifically,

p(x; α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x| + βx) ,

x → ±∞ (8)

as follows from the asymptotic relation

Kν(x) ∼
√

2/πx−1/2e−x as x → ∞. (9)

The normal inverse Gaussian law NIG(α, β, µ, δ)
has the following important characterisation in terms
of the bivariate Brownian motion with drift. Let
B(t) = {B1(t), B2(t)} be a bivariate Brownian motion
starting at (µ, 0) and having drift vector (β, γ) where
β ∈ R and γ ≥ 0. Furthermore, let T denote the time
when B1 first reaches level δ > 0 and let X = B2(T ).
Then X ∼ NIG(α, β, µ, δ) with α =

√
β2 + γ2.

It is often of interest to consider alternative parametri-
sations of the normal inverse Gaussian laws. In particular,
letting ᾱ = δα and β̄ = δβ, we have that ᾱ and β̄ are
invariant under location—scale changes.

NIG shape triangle For some purposes it is use-
ful, instead of the classical skewness and kurtosis quan-
tities (7), to work with the alternative asymmetry and
steepness parameters χ and ξ defined by

χ = ρξ (10)

and
ξ = (1 + γ̄)−1/2 (11)

where ρ = β/α = β̄/ᾱ and γ̄ = δγ = δ
√

α2 − β2. Like κ̄3

and κ̄4, these parameters are invariant under location-
scale changes and the domain of variation for (χ, ξ) is the
normal inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}.
The distributions with χ = 0 are symmetric, and the nor-
mal and Cauchy laws occur as limiting cases for (χ, ξ)
near to (0, 0) and (0, 1), respectively. Figure 1 gives an
impression of the shape of the NIG distributions for vari-
ous values of (χ, ξ).

Note in this connection that κ̄3 and κ̄4 may be reex-
pressed as

κ̄3 = 3γ̄−1 ρ

{(1 + ρ2)(1 − ρ2)1/2}1/2

and

κ̄4 = 3γ̄−1 1 + 4ρ2

(1 − ρ4)1/2

from which it follows that for small ρ we have approxi-
mately ξ

.= (1+3/κ̄4)−1/2 and κ̄3
.= ρκ̄4 (compare to (10));

Thus the roles of χ and ξ are rather similar to those of
the classical quantities κ̄3 and κ̄4. Note also that ρ may
be considered as an alternative asymmetry parameter, see
Figure 1; this is of some particular interest in turbulence,
cf. Section 4.1.

A systematic study of the class of normal inverse
Gaussian distributions, and of associated stochastic pro-
cesses, was begun in [32–36]. Further theoretical develop-
ments and applications are discussed in [37–48]. As dis-
cussed in the papers cited and in references given there,
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Fig. 1. The shape triangle of the normal inverse Gaussian distributions (NIG distributions) with the log density functions of
the standardized distributions, i.e. with mean 0 and variance 1, corresponding to the values (χ, ξ) = (±0.8,0.999), (±0.4,0.999),
(0.0,0.999), (±0.6,0.75), (±0.2,0.75), (±0.4,0.5), (0.0,0.5), (±0.2,0.25) and (0.0,0.0). The coordinate system of the log densities
is placed at the corresponding value of (χ, ξ) with the scale being 1/20 of the original. Furthermore, the line corresponding to
ρ = 0.1, i.e. χ = 0.1ξ, is shown.

the class of NIG distributions and processes have been
found to provide accurate modelling of a great variety of
empirical findings in the physical sciences and in financial
econometrics. (The wider class of generalised hyperbolic
distributions, introduced in [49], provides additional pos-
sibilities for realistic modelling of dynamical processes, see
references in the papers cited above.)

2.2 Description of the data

Our analysis of the relevance of NIG distributions for tur-
bulent velocity increments is based on three data sets ob-
tained from three different experiments. In the following,
we will refer to these data sets using the abbreviations
data set I for the atmospheric boundary layer experiment,
data set II for the free-jet experiment and data set III for
the wake-flow experiment. We only give a brief descrip-
tion of the experiments and list in Table 1 as the main
parameters the Reynolds number Rλ based on the Taylor
microscale, the mean velocity U , the sampling frequency f
and the estimated decorrelation time T . For more details,
we refer to [50,51] for data set I, [31] for data set II and [52]
for data set III.

Data set I consists of the one point time record of the
longitudinal (along the mean flow) velocity-component in
the atmospheric boundary layer at a height of 35 m above
the ground. The total size of the record is 2 × 107.

Data set II consists of the one point time record of the
longitudinal velocity-component in a free-jet experiment.

Table 1. Characteristic parameters Reynolds number Rλ, U
(unit m/s), f (unit kHz) and T (in units of the finest resolution
1/f) for the three data sets.

Characteristic parameters
data set Rλ U f T
I 17000 8.3 5 20000
II 190 2.26 8 240
III 80 5.13 10 50

A jet of dry air, continuously streaming into the experi-
mental chamber through a nozzle, develops in a surround-
ing of dry air which is in rest. Shear forces which arise at
the edge of the jet lead to growing instabilities and finally
turbulence. The time series was measured in the middle
of the jet at a distance, where fluctuations around the
mean can be assumed to be homogeneous, isotropic and
stationary. The total number of records is 12.5 × 106.

Data set III consists of the one point time record of the
longitudinal velocity-component in a wake generated by a
flat plate, normal to the flow and placed downstream in
the contraction of an open circuit wind tunnel. The total
sample size is 4.2 × 106.

For the estimation of the pdf of velocity increments
we normalized each of the velocity records by its standard
deviation. Furthermore, we divided each data set, for each
lag, into non-overlapping subsets of equal length and cal-
culated the velocity increments at the center of each sub-
set, i.e. the analyzed data for each lag s are of the form
v((2i−1)L/2+s/2)−v((2i−1)L/2−s/2), i = 1, . . . , NL.
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Table 2. Description of the data used to estimate the pdf of
velocity increments.

Sample characteristics
data set s ∈ L NL

I [4, 280] 400 50000
[300, 680] 800 25000
[700, 1500] 1600 12500
[1600, 3800] 4000 5000
[4000, 9500] 10000 2000

II [2, 200] 250 50000
[220, 380 500 25000
[400, 880] 1000 12500

III [2, 102] 130 30000

Table 2 lists the length L of the subsets and the sample
size NL for each lag s (in units of the finest resolution 1/f).

3 Distribution of velocity increments

In this section, we examine the pdf of temporal velocity
increments

u(s) ≡ v(t + s) − v(t) (12)

for all three data sets, where t and the temporal lag s
are measured in units of the finest temporal resolution
1/f and f is the sampling frequency. Note that we are
not using Taylor’s frozen flow hypothesis [7], which would
translate (12) into v(σ−Us)− v(σ), where U is the mean
velocity and σ denotes the spatial position. With our def-
inition (12) of velocity increments we expect a positively
skewed pdf according to the reversed sign of the famous
Kolmogorov 4/5 th law [1,2].

As the main result of this section we state that the
pdf of temporal velocity increments can well be fitted by
a normal inverse Gaussian distribution for all amplitudes
and all temporal lags s, ranging from the finest resolu-
tion 1/f up to the largest lags, where a proper statistical
inference is feasible.

3.1 NIG analysis

The analysis of the pdf of the turbulent velocity incre-
ments, from the data described in Section 2.2, is performed
using maximum likelihood estimation of the four parame-
ters α, β, µ and δ of the NIG(α, β, µ, δ) distribution. The
numerical estimation uses the routine “hyp”, a program
consisting of various numerical and graphical procedures
for assessing the reasonableness of an analysis using one of
the generalised hyperbolic distributions, in particular the
NIG distribution. It provides the estimates of the param-
eters of the NIG distribution and evaluates the agreement
between the observed and the estimated distribution.

Figures 2–4 illustrate, by examples, the results of the
approximation of the empirical pdf of velocity increments
within the class of NIG distributions for our three data
sets. The lags shown in Figures 2–4 vary over the whole

range of lags that allow for a proper estimation of the
empirical pdf. The largest lags are well inside the Gaus-
sian regime for data sets II and III, while for data set I
the Gaussian limit is not reached. For the lags allow-
ing proper estimation but which are not represented in
these Figures the accuracy of the approximation is equally
good. Results for those lags can be downloaded from
http://home.imf.au.dk/schmiegl/NIG.

The overall impression we get from Figures 2–4
strongly supports the relevance of NIG distributions for
describing the pdf of velocity increments for all lags s.
The quality of the fit is independent of the kind of data
and independent of the lag s. Discrepancies between the
NIG approximation and the empirical pdf occur for large
amplitudes where the pdf become approximately � 10−6.
The deviations at large amplitudes show up when the scat-
ter of the data becomes visible and thus we may expect
the goodness of fit to increase with increasing sample size.

The analysis within the class of NIG distributions
clearly exhibits the well-known characteristics of the evo-
lution of the pdf of velocity increments across all lags.
For data set I and II we observe stretched exponentials
within the dissipative scales, turning to exponential tails
and finally reaching Gaussian-like shapes for the very
large lags. For data set III we do not observe convex
stretched exponentials but a smooth change from expo-
nential tails to Gaussian tails. This observation is in con-
formity with results reported in [20] where the absence of
convex stretched exponentials for the tails is connected to
the absence of an inertial range.

To complete the analysis of this section we show
the parameters α(s), β(s), µ(s) and δ(s) of the fitted
NIG(α(s), β(s), µ(s), δ(s)) distributions in Figure 5. Leav-
ing aside the scatter at large lags, all parameters roughly
follow a smooth curve with comparable range of values.
The estimated parameters for data sets II and III seem
to have a similar dependence on the lag s while data
set I shows a different behaviour, in particular for the pa-
rameters α(s) and β(s). This is not surprising since the
Reynolds numbers of data sets II and III are comparable
in order. In Section 4, we propose useful combinations of
these parameters that clearly indicate universal features,
common to all three data sets, that are hidden in Figure 5.

3.2 Stretched exponential tails

The analysis of the pdf of velocity increments based on the
class of NIG distributions in the last Section showed the
evolution from convex tails for small lags through expo-
nential tails for moderate lags and finally to Gaussian-like
tails for large lags (Figs. 2–4). For comparison with clas-
sical findings we now quantify these observations in terms
of stretched exponential tails

p(u) ∝ exp{bum} (13)

for large amplitudes u. We somewhat arbitrarily de-
fine large amplitudes u for a given lag s as increments
that exceed 10% of the largest observed amplitude. We
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Fig. 2. Approximation of the pdf of velocity increments within the class of NIG distributions for data set I and lags s =
4, 8, 20, 52, 148, 300, 600, 2000, 8000 (in units of the finest resolution 1/f).

performed a least mean square fit for the stretching expo-
nent m in (13) for the right tail of the NIG distributions
for lags that correspond to those in Figures 2–4. We ob-
served stretched exponentials of the form (13) for all lags
and the whole range of large amplitudes in conformity
with results reported in the literature.

These findings are not in contrast to the stated asymp-
totically semiheavy tails (8) for NIG distributions. Semi-
heavy tails occur at very large amplitudes which do not
appear in our analysis. The observed stretched exponen-
tials (13) describe intermediate amplitudes. In this respect
it is to note that [21] give some arguments in favour of only
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Fig. 3. Approximation of the pdf of velocity increments within the class of NIG distributions for data set II and lags s =
2, 6, 22, 50, 100, 200, 520, 760, 880 (in units of the finest resolution 1/f).

a finite range of amplitudes with stretched exponential be-
haviour for turbulent velocity data.

Figure 6a shows the estimated stretching exponents m
as a function of the lag s. For data set I, the largest ob-
served stretching exponent is clearly below the Gaussian
value 2, which indicates that the large scale limit of data
set I is away from Gaussianity. We come back to this kind

of behaviour in Section 4.1 where we investigate the global
shape of the pdf in more detail. For data sets II and III the
stretching exponent reaches the Gaussian limit but does
not display the strong convexity of the pdf of data set I.

The overall impression of Figure 6a does not reveal any
universal behaviour between the three data sets. However,
Figure 6b shows the same stretching exponents m but now
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Fig. 4. Approximation of the pdf of velocity increments within the class of NIG distributions for data set III and lags
s = 2, 4, 6, 10, 20, 30, 50, 74, 100 (in units of the finest resolution 1/f).

as a function of the estimated scale parameter δ (Fig. 5c).
We observe a striking collapse of the three sets of expo-
nents m on one single curve. The location of each set of
exponents on this common curve apparently depends on
the Reynolds number and in general on the kind of large
scale fluctuations. The dependence seems, however, to be
weak since there is a large region where the three data
sets overlap.

4 Universality and parsimony

The NIG distributions (cf. Sect. 2.1) are characterized by
four parameters α(s), β(s), δ(s) and µ(s) whose depen-
dence on the lag s will be examined in the following. We
mainly focus on shape triangles, introduced in Section 2.1,
as a descriptive tool for the characterization of the global
shape of NIG distributions, and on various combinations
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Fig. 5. Estimated parameters α(s), β(s), δ(s) and −µ(s) as functions of the lag s (in units of the finest resolution 1/f) for
data set I (◦), data set II (�) and data set III (+) in double logarithmic representation.
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Fig. 6. Stretching exponents m as a function of the lag s (a) and as function of the scale parameter δ (b) for data set I (◦),
data set II (�) and data set III (+). Abscissae are represented in logarithmic scales.

of the parameters that allow for a parsimonious and, to
a certain extent, universal description of the fitted NIG
distributions.

4.1 Shape triangles

The NIG shape triangle is a plotting device for showing
the asymmetric and non-Gaussian character of a given
NIG distribution. The parameters χ and ρ are associated
to the degree of asymmetry of the given distribution while
(χ, ξ) reflects the degree of non-Gaussianity, with the limit
(χ, ξ) → (0, 0) for a normal distribution, see Figure 1.
Figures 7–9 show the shape triangles and amplifications
of the relevant part of the triangles for data sets I-III. Each
symbol corresponds to the maximum likelihood estimate
of (ξ, χ) at one given lag s (which can be read off from
Fig. 14a).

While data sets II and III clearly approach the Gaus-
sian limit at the origin for large lags, this is not observed
for data set I. The non-Gaussian behaviour for large lags
for data set I already appeared in connection with the
stretching exponent m < 2 for the tails. The difference in
the large scale behaviour might be due to the fact that ex-
periments II and III are performed under controlled and
steady conditions, while experiment I involves unsteady
large scale fluctuations, leading to a limit that is away
from Gaussianity. However it is not clear to what extent
this limit describes the dynamics of large scale fluctua-
tions since we could not resolve all lags up to the estimated
decorrelation time T = 20000 for data set I (Tab. 2).

Some common features are clearly visible in the shape
triangles. First, we observe that the path within the shape
triangle is restricted to the same region 0 ≤ χ < 0.2, i.e. all
three data sets exhibit the same kind of asymmetry, irre-
spective of the Reynolds number. Furthermore, we observe
that the slope 1/ρ = α/β (consult Eq. (10)) of all three
paths across lags is roughly constant for each data set
and of the same order 10−20. Thus, the evolution of the
pdf from its initial asymmetric state to its final state fol-
lows approximately a type of universal, linear behaviour.
Differences show up in the initial and final states which
are near the origin for data sets II and III and some other
state for data set I, which is symmetric, but does not have
Gaussian steepness. The initial and final state in the shape
triangle clearly depend on the Reynolds number and the
experimental situation. However the way these two shapes
are connected across lags follows a simple, approximately
linear evolution that is very similar for all three data sets.

4.2 Smooth parameters and universality

This section gives a more detailed description of the pa-
rameters of the fitted NIG distributions. The estimated
values of the four parameters α(s), β(s), µ(s) and δ(s)
as shown in Figure 5 follow different curves for each data
set. Of course, we can also choose various combinations of
these parameters as our basic parameters. In the follow-
ing we will focus on combinations that are smooth and
have a simple, in particular monotonic dependence on the
lag s. We choose the scale parameter δ, the ratio α/δ and
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Fig. 7. (a) Shape triangle for the evolution of the pdf of velocity increments across lags for data set I. (b) Amplification of the
relevant part of (a). The numbers denote the lags of several of the velocity increments, as used in Figure 1. All represented lags
can be read off from Figure 14a.

the steepness ξ as the set of parameters that are conve-
nient for our purposes. We are able to restrict to three
parameters instead of four once we use the stationarity of
the velocity field which implies that the cumulant of first
order (5) vanishes. Thus, we expect µ(s) to be of the form

µ(s) = − δ(s)β(s)√
α(s)2 − β(s)2

. (14)

Figures 10–12 show −µ(s) and δ(s)β(s)/
√

α(s)2 − β(s)2
as a function of the lag s for each of our data sets. Besides
some scatter for data set I, relation (14) is confirmed for
all three data sets with high accuracy.

The scale parameter δ(s) as a function of the lag s
is shown in Figure 5c. Leaving aside the scatter for large
lags that is due to the decrease of the sample size with
increasing lag, we observe a monotonically increasing
function of the lag s. For intermediary lags an approxi-
mate scaling range becomes visible which increases with



356 The European Physical Journal B

Fig. 8. (a) Shape triangle for the evolution of the pdf of velocity increments across lags for data set II. (b) Amplification of
the relevant part of (a). The numbers denote the lags of several of the velocity increments, as used in Figure 1. All represented
lags can be read off from Figure 14a.

increasing Reynolds number. In the following we will, in
view of the monotonicity, think of δ(s) as a time change
and investigate the other parameters α/δ and ξ as func-
tions of δ(s).

The usefulness of this time change was already shown
in Section 3.2 where we observed an approximate collapse
of the stretching exponents m(δ) for the tails. A similar
behaviour can be observed for the parameters (α/δ)(δ)
and ξ(δ) in their dependence on δ. Figure 13a shows α/δ

as function of the lag s and Figure 13b as a function of δ
for our three data sets. For both of the two parameter sets
there is a striking collapse onto one single curve. Each data
set is covering a certain part of this common curve in the
(δ, α/δ) space, with large overlapping regions. It is to note
that the corresponding plots of α/δ as a function of the
lag s (Fig. 13a) show a rather different behaviour for each
data set. It is the time change with δ(s) that causes the
collapse on one, apparently universal curve.



O.E. Barndorff-Nielsen et al.: A parsimonious and universal description of turbulent velocity increments 357

Fig. 9. (a) Shape triangle for the evolution of the pdf of velocity increments across lags for data set III. (b) Amplification of
the relevant part of (a). The numbers denote the lags of several of the velocity increments, as used in Figure 1. All represented
lags can be read off from Figure 14a.

A similar kind of universality can be observed for the
steepness parameter ξ when plotted as a function of δ.
Figure 14 shows the comparison of ξ(s) as a function of
the lag s and ξ(δ) as function of the scale parameter δ
for all three data sets. The same striking collapse of the
three parameter sets on a single, universal curve can be
observed.

The collapse of the various parameter sets is not per-
fect, but to a first approximation it seems to hold for all
lags. We come back to the accuracy of the collapse of ξ(δ)
at the end of this Section. Here we state that, to a first
approximation, a universal and parsimonious description
of the pdf of velocity increments for all three data sets
can be achieved using the three functions δ(s), (α/δ)(δ)
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Fig. 10. Comparison of −µ(s) (◦) with

δ(s)β(s)/
√

α2(s) − β2(s) (×) for data set I in double
logarithmic representation.

Fig. 11. Comparison of −µ(s) (◦) with

δ(s)β(s)/
√

α2(s) − β2(s) (×) for data set II in double
logarithmic representation.

and ξ(δ) as the basic parameters to describe the evolution
of the pdf across lags. The scale parameter δ(s) is the basic
time change for each data set and allows for an approxi-
mately universal description of the remaining parameters.
This universality is characterized by the striking fact that
the parameters (α/δ)(δ) and ξ(δ) for each data set fol-

Fig. 12. Comparison of −µ(s) (◦) with

δ(s)β(s)/
√

α2(s) − β2(s) (×) for data set III in double
logarithmic representation.

low one universal function. It is the time change δ(s) that
embodies most of the differences between the data sets.

Some remarks about the interpretation of our choice
of basic parameters are in order. The scale parameter δ(s)
has the advantage of being monotonically increasing with
the lag s and thus provides a natural time change for
each data set. The parameter ξ describes the steepness of
the NIG distribution and is invariant under scale-location
transforms. As one of the parameters of the shape trian-
gle it serves as a global parameter for the evolution of
the shape across lags. The third parameter α/δ is closely
related to the second order structure functions. In our
investigation of the empirical pdf, we have β 
 α for
not too large lags. Thus we approximate to first order
S2 = κ2 ≈ δ/α (consult Eq. (5)). Universal features as
shown by the collapse of α/δ are thus related to uni-
versal features of the second order structure functions.
This universality even applies when there is no inertial
range as for data set III. A related kind of time change
that applies for inertial range statistics only, is given by
the concept of Extended Self-Similarity [10]. There, some
structure function of order n′ serves as a time change for
structure functions of higher orders n > n′, which leads
in most cases to a more pronounced and more extended
scaling behaviour of structure functions. We come back to
this point in Section 5.

The universal behaviour of α/δ and ξ reveals itself as
the approximate collapse of these parameters on single
curves, one for α/δ and one for ξ. For α/δ we did not find
a simple analytical expression for the universal shape that
is visible in Figure 13b. However for the steepness ξ it is
possible to detect a simple exponential behaviour

ξ(δ) = exp(−aδb) (15)
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Fig. 13. (a) Comparison of (α/δ)(s) as a function of the lag s with (b) (α/δ)(δ) as a function of the scale parameter δ for data
set I (◦), data set II (�) and data set III (+) in double logarithmic representation.

Fig. 14. (a) Comparison of ξ(s) as a function of the lag s with (b) ξ(δ) as a function of the scale parameter δ for data set I (◦),
data set II (�) and data set III (+) in double logarithmic representation.
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Fig. 15. Illustration of the linear dependence of log(− log(ξ))
on log(δ) for data set I. The straight line is of the form
0.36 log(δ) − 0.56.

for a certain, but extended range of δ and for each indi-
vidual data set. The estimated exponents b of the three
data sets are different, thus indicating the limitations of
the collapse of ξ on one single curve. The apparent univer-
sal shape of ξ as a function of δ is due to the fact that the
curves given by the exponential laws (15), for each data
set, are very close to each other with extended overlaps.

Figure 15 shows log(− log(ξ)) as a function of log(δ)
for data set I. We observe an extended range of δ-values
where the exponential behaviour (15) holds to high accu-
racy with a = 0.56 and b = 0.36. Translating the δ coor-
dinate back to temporal lags s (Fig. 5c), we get the range
s ∈ [12, 1000] that is over three orders of magnitude. This
kind of exponential behaviour also holds for data set II
and III. From Figures 16, 17, we clearly see that the ex-
ponential behaviour (15) holds for s ∈ [10, 500] for data
set II and s ∈ [4, 80] for data set III, thus covering most
of the lags we looked at in our analysis. The estimated
values are a = 0.43, b = 0.54 for data set II and a = 0.35,
b = 0.49 for data set III.

For the moment we do not have a theoretical explana-
tion for this kind of exponential law. An important point
in this respect is the fact that the same exponential be-
haviour was observed for data on wind shear consisting of
changes in headwind speed experienced by aircraft during

Fig. 16. Illustration of the linear dependence of log(− log(ξ))
on log(δ) for data set II. The straight line is of the form
0.54 log(δ) − 0.43.

landing phase [53]. Despite the obvious fundamental dif-
ference to the kind of data we use in our analysis, there
appears to be the common feature of the steepness ξ to
depend exponentially on the scale parameter δ.

5 Time change and extended self-similarity

This section discusses the relation between the time
change δ(s) and the concept of ESS. For convenience,
subscripts i and j refer to different data sets (different
experiments and/or different Reynolds numbers), super-
scripts f (−1) denote the inverse of the function f , R(f)
the range of f and d= denotes equality in distribution.

Due to the stationarity of the velocity field, the dis-
tribution of velocity increments u(s) is completely deter-
mined by the three parameters δ(s), (α/δ)(s) and ξ(s).
The time change δ(s) causes (α/δ)(δ) and ξ(δ) to col-
lapse, to first order, on single, universal curves with large
overlaps. Thus we propose the existence of a stochastic
equivalence class

ui(s1)
d= uj(s2) if and only if Fi(s1) = Fj(s2), (16)

where F : [0,∞) → [0,∞) is a positive real-valued func-
tion whose inverse exists. The analysis of the distribution



O.E. Barndorff-Nielsen et al.: A parsimonious and universal description of turbulent velocity increments 361

Fig. 17. Illustration of the linear dependence of log(− log(ξ))
on log(δ) for data set III. The straight line is of the form
0.49 log(δ) − 0.35.

of velocity increments within the class of NIG distribu-
tions suggests

Fi(s) ≈ δi(s), (17)

which we confirmed to a reasonable accuracy for i ∈
{data set I, data set II, data set III}. A closer examination
of (16) and its connection to the time change δ(s) for more
data sets is the subject of a forthcoming paper. For the
moment we assert that our empirical findings support the
existence of a stochastic equivalence relation (16).

We may rewrite (16) for s ∈ R(Fi) ∩ R(Fj) as

ui(s)
d= uj(F

(−1)
j (Fi(s))) = uj(Fi,j(s)) (18)

where
Fi,j(s) = F

(−1)
j (Fi(s)). (19)

In particular, if j refers to a fully developed turbulent
velocity field, (18) directly compares the dynamics of the
fully developed state with that of any finite Reynolds num-
ber if the Functions Fi(s) and Fj(s) are known.

In the following we discuss the equivalence rela-
tion (16) with respect to ESS. ESS states that for structure
functions Si,n(s) = E{ui(s)n} of order n, n ∈ N, we have

Si,n(s) = ci(n)(fi(s))τ(n) (20)

for a certain range of scales that extends the inertial range.
The important point here is that the real-valued func-
tions fi : [0,∞) → [0,∞) do not depend on n. ci(n) de-
notes a constant that depends on i and n. Note that with
our definition of velocity increments (12) we may assume
ci(n) ≥ 0.

Under mild assumptions it is possible to show the
equivalence of the ESS relation (20) and the existence
of an equivalence class (18). The proof of (18)⇒(20)
only requires the existence of a fully developed turbu-
lent state where the scaling relation (1) holds. The proof
of (20)⇒(18) additionally needs the assumption of finite
structure functions Sn(s) < ∞ for all n ∈ N.

Starting from (18), it follows immediately that

Si,n = Sj,n(F (−1)
j (Fi(s))). (21)

For j referring to a fully developed turbulent velocity field
where (1) is assumed to hold, we get

Si,n = (F (−1)
j (Fi(s)))τ(n). (22)

Comparing (22) with (20), we conclude

fi(s) ∝ F
(−1)
j (Fi(s)). (23)

Thus ESS follows straightforward from (18).
In the next step, we show that ESS implies the equiva-

lence relation (18) under the assumption that all structure
functions Sn(s), n ∈ N are finite. This assumption means
(in essence) that the distribution of velocity increments is
determined by all its finite moments.

Again, choosing for j a fully developed turbulent state
where (1) holds, we rewrite the ESS relation (20) as

Si,n(s) ∝ Sj,n(fi(s)). (24)

Since the structure functions of arbitrary integer order
are assumed to be finite, we get from (24) (ignoring the
constant of proportionality in (24))

ui(s)
d= uj(fi(s)). (25)

Note that in (25) (as well as in (23)) j refers to a fully
developed turbulent state. For an arbitrary state j, (25)
translates to

ui(s)
d= uj(f

(−1)
j (fi(s))) (26)

and comparing (18) with (26) we obtain

Fi,j(s) = f
(−1)
j (fi(s)). (27)

Thus, ESS implies the existence of an equivalence rela-
tion (18) and the proof of the equivalence of (20) and (18)
is completed.

To our knowledge, the reformulation of ESS in terms
of an equivalence relation of the form (18) has not been
reported in the literature so far. Although it is straight-
forward to reach (18) starting from (20), the character
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of (18) is completely different. While (20) relates struc-
ture functions within the same experiment, (18) relates
the statistics of different experiments.

It is to note that we were able to deduce the func-
tions Fi,j starting from (20), but this does not determine
the functions Fi. Our empirical analysis suggests the scale
parameter δi as an approximation for Fi, which is not im-
plied by ESS.

6 Conclusions

We performed a statistical analysis of the pdf of turbulent
velocity increments for three rather different data set, dif-
ferent in experimental conditions and in Reynolds num-
ber. We found that the pdf of velocity increments can be
well fitted within the class of NIG(α, β, µ, δ) distributions
for all lags, from the finest resolution up to the largest
lags that allow for a proper statistical estimation of the
parameters α, β, µ and δ. The resolution of the tails was
shown to be in conformity with classical findings, that
is an evolution of the tails from stretched exponentials
to Gaussian-like shapes. The illustrative representation of
the evolution of the shape of the pdf across lags with the
help of shape triangles revealed a simple, linear and uni-
versal behaviour for all three data sets.

The analysis within the class of NIG distributions
comes with four parameters α, β, µ and δ, where one,
chosen to be µ, depends on the other three parameters α,
β and δ in a precise way due to the stationarity of the
velocity data. The remaining three parameters α(s), β(s)
and δ(s) as functions of the lag s depend on s in a non-
universal way. However, once we introduce a time change,
from s to δ(s), striking universal features can be detected.

It turns out that maximum likelihood estimates of the
parameter combinations α/δ and ξ, when plotted as func-
tions of the scale parameter δ, collapse (to first order) on
single, apparently universal curves, one for α/δ and one
for ξ, with large overlapping regions. The individual char-
acteristics of each data set are thus largely captured by
the scale parameter δ(s). In addition, we find that the
stretching exponents m describing the tails of the pdf also
collapse on one single curve when plotted as a function of
the scale parameter δ. Note that we normalised each data
set by its standard deviation. However, it does not change
the form of the functional dependence of α/δ, ξ and m on
the scale parameter δ.

In summary we are able to parsimoniously describe all
three data sets by two universal curves and one individual
time change δ(s) for each data set.

We were able to show the existence of a simple expo-
nential behaviour for ξ(δ) for a wide range of δ values.
This exponential law seems to have far-reaching applica-
bility since it is also reported for a rather different kind of
turbulent data set.

The universal features we were able to show for turbu-
lent velocity increments goes far beyond the usual multi-
fractal description which in general is appropriate only for
a restricted range of lags (a fraction of the inertial range)
and very high Reynolds numbers, where universal scaling

exponents τ(n) for structure functions (1) are expected.
Our three data sets covered a range of Reynolds num-
bers where, on the one hand, an inertial range was clearly
visible (data sets I and II), while on the other hand, no
inertial range could be detected (data set III). Thus, our
findings concerning universal features of the distributional
properties of velocity increments apply without reference
to inertial range dynamics.

For the moment, our analysis has to be understood
as a purely empirical study. We have no clear physical
interpretation of why the time change δ(s) works so sur-
prisingly well in detecting universal features for the pdf of
turbulent velocity increments. There is a whole range of
challenging problems that immediately come to mind.

We demonstrated the relation of the time change δ(s)
to the concept of Extended Self-Similarity. Our empirical
findings suggest, in accordance with ESS, the existence of
a fundamental equivalence class that relates the statistics
of velocity increments of different Reynolds numbers and
different experiments. In this respect, the closer examina-
tion of the function F is of particular importance.

The analysis of more data sets is needed to shed light
on the dependence of the time change δ(s) on the Reynolds
number and on the kind of experiment that is performed.
Another important point concerns the similarities between
our data sets and the one that is described in [53]. Both
sets of data show the same exponential law (15).

A third issue concerns the implications of our results
for the understanding of the dependence structure of the
velocity field. We intend to study the dependence struc-
ture in subsequent work.

We are much indebted to K.R. Sreenivasan, J. Peinke and B.R.
Pearson for allowing us to use the data sets I, II and III, re-
spectively. We are also grateful to the two referees of this paper
for helpful comments. Part of this work was supported by Ma-
PhySto – A Network in Mathematical Physics and Stochastics,
funded by the Danish National Research Foundation. J.S. ac-
knowledges support from the Alexander von Humboldt Foun-
dation with a Feodor-Lynen-Fellowship.
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